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Exercise 1.1. Classify the example PDEs given in lectures into linear / semilinear /
quasilinear / fully nonlinear.

Exercise 1.2. Find three examples of well known PDE in mathematics or physics (other
than the examples given in lectures). Write a sentence or two about the importance of
each and classify them into linear / semilinear / quasilinear / fully nonlinear.

Exercise 1.3. Fill in the gaps of the proof of the Picard-Lindelöf theorem from lectures.

Exercise 1.4. By induction on m ∈ N, show that if x ∈ R
m and j ∈ N then:

(x1 + . . .+ xm)j =
∑
|α|=j

( |α|
α

)
xα,

where the multinomial coefficient is defined by:
( |α|

α

)
=

|α|!
α!

=
|α|!

α1!α2!, · · ·αm!
.

Exercise 1.5 (*). Let x ∈ R
n and suppose that f(x) =

∑
α fαx

α and g(x) =
∑

α gαx
α

are two formal power series.

a) Show that if g � f then Dβg � Dβf for any multiindex β, where we differentiate
each formal series term by term.

b) Suppose that g � f and g converges for |x| < r. Show that for any s < r:

sup
|x|≤s

|f(x)| ≤ sup
|x|≤s

g(x)

c) By making an appropriate choice of majorant g, show that if f is real analytic at
x = 0 then there exist constants s > 0, C > 0 and ρ > 0 such that:

sup
|x|≤s

∣∣∣Dβf(x)
∣∣∣ ≤ C

|β|!
ρ|β|

(1)

d) Conversely, suppose f : Br(0) → R is a smooth function such that (2) holds for some
s > 0, C > 0 and ρ > 0. Show that f is real analytic at 0 (you may assume the
multivariable Taylor theorem).

e) Show that if f : Br(0) → R is real analytic at 0, there exists s with 0 < s < r such
that f is real analytic at x0 for all x0 ∈ Bs(0).

Please send any corrections to zoe.wyatt@maths.cam.ac.uk
Questions marked (∗) may be handed in, those marked (†) are optional.
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f) Suppose U ⊂ R
n is an open and connected set, and that f : U → R is analytic on U .

Show that if there exists a point x ∈ U such that Dβf(x) = 0 for all β, then f = 0 on
U .

g) (†) If you are familiar with the Fourier transform.
Suppose f ∈ L2(R) and let f̂ ∈ L2(R) be its Fourier transform. Show that if
eb|k|f̂(k) ∈ L2(R) for some b > 0 then f is real analytic at each point in R.

Exercise 1.6. Consider the following transport equation in two dimensions:

y
∂u

∂x
− x

∂u

∂y
= 0. (2)

i) Find the characteristic surfaces (in this case they will in fact be curves).

ii) Show that along a characteristic curve u is constant, and hence solve (3) subject to
u(x, 0) = f(x) for x ≥ 0, where f : [0,∞) → R is given.

iii) Show directly from your solution that if f is real analytic at x > 0 then u is analytic
in a neighbourhood of (x, 0).

iv) (†) This approach to solving first order equations is called the method of characteris-
tics. Write a brief account of this method for first order quasilinear equations in 2
dimensions (you may wish to look for example at F. John, Ch 1).

Exercise 1.7 (*). i) Show that {t = 0} is a characteristic surface of the one-dimensional
heat equation:

∂u

∂t
=

∂2u

∂x2

ii) Suppose that u is a smooth solution to the heat equation in a neighbourhood of
{t = 0} and that u(0, x) = u0(x). Show that all derivatives of u at (t, x) = (0, 0) can
be expressed in terms of u0(x).

iii) Take u0(x) =
1

1+x2 . Show that the formal Taylor series for u about (t, x) = (0, 0)
obtained in part ii) does not converge on any neighbourhood of the origin.
[This example is due to Kovalevskaya.]

Exercise 1.8. Consider Laplace’s equation in two dimensions:

∂2u

∂x2
+

∂2u

∂y2
= 0 (3)

Construct a sequence of real analytic functions (uk)∞k=1 with uk : R2 → R solving (4) such
that for any l ∈ N:

sup
x

∣∣∣(∂x)luk(x, 0)
∣∣∣+ sup

x

∣∣∣(∂x)l∂yuk(x, 0)
∣∣∣ → 0

as k → ∞, but such that for any ε > 0

sup
x

|uk(x, ε)| → ∞.

What does this mean for the well-posedness of the Cauchy problem for Laplace’s equation?
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Exercise 1.9. Consider the general second order linear PDE in two dimensions:

auxx + 2buxy + cuyy + dux + euy + f = 0

where a, b, c, d, e, f are functions of x, y. Give a criterion for this equation to be elliptic
at (x, y).

Exercise 1.10. Consider the wave equation in 1 + 1 dimensions:

− ∂2u

∂t2
+

∂2u

∂x2
= 0 (4)

i) Find all the characteristic surfaces.

ii) Show that a general solution has the form:

u(t, x) = f(t− x) + g(t+ x)

iii) Find explicitly the solution to the Cauchy problem with data given on {t = 0}:

u(0, x) = u0(x), ∂tu(0, x) = u1(x).

iv) Show that1

sup
x

|∂xu(x, t)|+ sup
x

|∂tu(x, t)| � sup
x

∣∣u′0(x)∣∣+ sup
x

|u1(x)|.

Exercise 1.11. Consider the wave equation:

− ∂2u

∂t2
+Δu = 0, (5)

for u : R1+3 → R. Suppose that Σ = {φ(x, y, z) = t} is a hypersurface.

i) Show that Σ is everywhere characteristic if and only if φ obeys the eikonal equation:

|∇φ|2 = 1.

ii) Find all planes in R
1+3 which are everywhere characteristic.

iii) Suppose u0, u1 : R3 → R are everywhere real analytic. By explicitly casting the
problem as a first order system, show that in a neighbourhood of {t = 0} there exists
a unique real analytic solution to (6) satisfying u|t = u0, ∂tu|t = u1.

1We write A � B to mean that there exists a universal constant C such that A ≤ CB.


