
Part II Algebraic Geometry

Example Sheet II, 2015
(For all questions, assume k is algebraically closed.)

1. Given distinct points P0, · · · , Pn+1 in P
n, no (n + 1) of which are contained in a hyperplane, show that homo-

geneous coordinates may be chosen on P
n so that P0 = (1: 0: . . . : 0), · · · , Pn = (0: . . . : 0: 1) and

Pn+1 = (1: 1: . . . : 1). [This generalises to arbitrary n a result you are very familiar with when n = 1.]

2. Given hyperplanes H0, · · · , Hn of Pn such that H0∩· · ·∩Hn = ∅, show that homogeneous coordinates x0, . . . , xn

can be chosen on P
n such that each Hi is defined by xi = 0.

3. Let W be an n-dimensional vector space over k. Denote by P(W ) the projective space (W \ {0})/ ∼, where
the equivalence relation is the usual rescaling. Show that the set of hyperplanes in P(W ) is parametrized by
P(W ∗), where W ∗ is the dual vector space to W . If P1, · · · , PN are points of P(W ), describe the set in P(W ∗)
corresponding to hyperplanes not containing any of the Pi. Deduce (using k infinite) that there are infinitely
many such hyperplanes.

4. Let V be a hypersurface in P
n defined by a non-constant homogeneous polynomial F , and L a (projective) line

in P
n; show that V and L must intersect in a non-empty set.

5. LetX be an algebraic set (in affine or projective space), and suppose thatX = X1∪· · ·∪Xn andX = X ′

1∪· · ·∪X
′

m

are two decompositions into irreducible components, such that Xi 6⊆ Xj for any i 6= j, and X ′

i 6⊆ X ′

j for any
i 6= j. Show that n = m and after reordering, Xi = X ′

i. Thus irreducible decompositions are essentially unique.

6. Decompose the algebraic set V in P
3 defined by equations x2

2 = x1x3 , x0x
2
3 = x3

2 into irreducible components.

7. Assume char k 6= 2.

i) Show that a homogeneous polynomial F (x0, x1, x2) of degree 2 can be written uniquely in the form x
TAx,

where A is a 3 × 3 symmetric matrix with entries in k and x
T = (x0, x1, x2); show that the polynomial is

irreducible if and only if det(A) 6= 0. Let V ⊂ P
2 be the algebraic set defined by the equation F = 0; if V is

irreducible and k algebraically closed, show that you can choose coordinates such that F = x2
0 + x2

1 + x2
2, and

that V is isomorphic to P
1.

ii) In contrast, show that if f(x, y) ∈ k[x, y] is an irreducible (non-homogeneous!) polynomial of degree 2, k
algebraically closed, then Z(f) is either A1 or A1 \ {0}.

8. Consider the projective plane curves corresponding to the following affine curves in A
2.

(a) y = x3 (b) xy = x6 + y6

(c) x3 = y2 + x4 + y4 (d) x2y + xy2 = x4 + y4

(e) 2x2y2 = y2 + x2 (f) y2 = f(x) with f a polynomial of degree n.

In each case, calculate the points at infinity of these curves, i.e., homogenize the equations to obtain equations for
a curve in P

2 and identify the resulting points at infinity. Furthermore, find the singular points of the projective
curve. If you wish, you may make assumptiosn about the characteristic of k to simplify the analysis.

9. If F (x0, . . . , xn) a homogeneous polynomial of degree d > 0, prove that dF =

n∑

i=0

xi ∂F/∂xi. If F is irreducible,

let X = Z(F ) ⊂ P
n be the projective variety defined by F = 0. We say a point p ∈ X is a non-singular point

of X if, denoting by U0, . . . , Un the standard cover of Pn by affine spaces, p is a non-singular point of X ∩ Ui

whenever p ∈ X ∩ Ui. Show that the singular locus of X (the set of points of X which are not non-singular)
consists precisely of the points p in P

n with ∂F/∂xi(p) = 0 for i = 0, . . . , n.


